人类喜欢将所有事物都纳入鄙视链的范畴,宠物当然也不例外。一般来说,拥有一只纯种宠物可以让主人占据鄙视链的云端,进而鄙视那些混血或者流浪宠物。甚至还发展出了专业的鉴定机构,可以颁发《血统证明书》。但是考究各类纯种鉴定的常规方法:例如眼睛的大小、颜色、鼻子的特点、身躯长度、尾巴特征、毛发等,当然也包括一些比较玄幻的特征:宠物家族的个性、气质等等。抛开“黑魔法”不在此讨论之外,既然是基于生物外形特征鉴定,判断是否纯种的需求本质上就是一个图像识别服务。
Hello TensorFlow
Tensorflow is not a Machine Learning specific library, instead, is a general purpose computation library that represents computations with graphs.
TensorFlow 开源软件库(Apache 2.0 许可证),最初由 Google Brain 团队开发。TensorFlow 提供了一系列算法模型和编程接口,让我们可以快速构建一个基于机器学习的智能服务。对于开发者来说,目前有四种编程接口可供选择:
- C++ source code: Tensorflow 核心基于 C++ 编写,支持从高到低各个层级的操作;
- Python bindings & Python library: 对标 C++ 实现,支持 Python 调用 C++ 函数;
- Java bindings;
- Go binding;
下面是一个简单的实例:
环境准备
- 安装 TensorFlow C library,包含一个头文件 c_api.h 和 libtensorflow.so
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-1.5.0.tar.gz## optionsTF_TYPE="cpu" # Change to "gpu" for GPU supportTF_VERSION='1.5.0'curl -L \ "https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_TYPE}-$(go env GOOS)-x86_64-${TF_VERSION}.tar.gz" |
-
安装 Go 语言环境,参考:
-
安装 Tensorflow Go binding library
go get github.com/tensorflow/tensorflow/tensorflow/gogo get github.com/tensorflow/tensorflow/tensorflow/go/op
- 下载模型(demo model),包含一个标签文件 label_strings.txt 和 graph.pb
mkdir modelwget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip -O model/inception.zipunzip model/inception.zip -d modelchmod -R 777 model
Tensorflow Model Function
//Loading TensorFlow modelfunc loadModel() error { // Load inception model model, err := ioutil.ReadFile("./model/tensorflow_inception_graph.pb") if err != nil { return err } graph = tf.NewGraph() if err := graph.Import(model, ""); err != nil { return err } // Load labels labelsFile, err := os.Open("./model/imagenet_comp_graph_label_strings.txt") if err != nil { return err } defer labelsFile.Close() scanner := bufio.NewScanner(labelsFile) // Labels are separated by newlines for scanner.Scan() { labels = append(labels, scanner.Text()) } if err := scanner.Err(); err != nil { return err } return nil}
Classifying Workflow
基于 Tensorflow 模型实现图像识别的主要流程如下:
- 图像转换 (Convert to tensor )
- 图像标准化( Normalize )
- 图像分类 ( Classifying )
func recognizeHandler(w http.ResponseWriter, r *http.Request, _ httprouter.Params) { // Read image imageFile, header, err := r.FormFile("image") // Will contain filename and extension imageName := strings.Split(header.Filename, ".") if err != nil { responseError(w, "Could not read image", http.StatusBadRequest) return } defer imageFile.Close() var imageBuffer bytes.Buffer // Copy image data to a buffer io.Copy(&imageBuffer, imageFile) // ... tensor, err := makeTensorFromImage(&imageBuffer, imageName[:1][0]) if err != nil { responseError(w, "Invalid image", http.StatusBadRequest) return } // ...}
函数 makeTensorFromImage() which runs an image tensor through the normalization graph.
func makeTensorFromImage(imageBuffer *bytes.Buffer, imageFormat string) (*tf.Tensor, error) { tensor, err := tf.NewTensor(imageBuffer.String()) if err != nil { return nil, err } graph, input, output, err := makeTransformImageGraph(imageFormat) if err != nil { return nil, err } session, err := tf.NewSession(graph, nil) if err != nil { return nil, err } defer session.Close() normalized, err := session.Run( map[tf.Output]*tf.Tensor{input: tensor}, []tf.Output{output}, nil) if err != nil { return nil, err } return normalized[0], nil}
函数 maketransformimagegraph() 将图形的像素值调整到 224x224,以符合模型输入参数要求。
func makeTransformImageGraph(imageFormat string) (graph *tf.Graph, input, output tf.Output, err error) { const ( H, W = 224, 224 Mean = float32(117) Scale = float32(1) ) s := op.NewScope() input = op.Placeholder(s, tf.String) // Decode PNG or JPEG var decode tf.Output if imageFormat == "png" { decode = op.DecodePng(s, input, op.DecodePngChannels(3)) } else { decode = op.DecodeJpeg(s, input, op.DecodeJpegChannels(3)) } // Div and Sub perform (value-Mean)/Scale for each pixel output = op.Div(s, op.Sub(s, // Resize to 224x224 with bilinear interpolation op.ResizeBilinear(s, // Create a batch containing a single image op.ExpandDims(s, // Use decoded pixel values op.Cast(s, decode, tf.Float), op.Const(s.SubScope("make_batch"), int32(0))), op.Const(s.SubScope("size"), []int32{H, W})), op.Const(s.SubScope("mean"), Mean)), op.Const(s.SubScope("scale"), Scale)) graph, err = s.Finalize() return graph, input, output, err}
最后,将格式化的 image tensor 输入到 Inception model graph 中运算。
session, err := tf.NewSession(graph, nil)if err != nil { log.Fatal(err)}defer session.Close()output, err := session.Run( map[tf.Output]*tf.Tensor{ graph.Operation("input").Output(0): tensor, }, []tf.Output{ graph.Operation("output").Output(0), }, nil)if err != nil { responseError(w, "Could not run inference", http.StatusInternalServerError) return}
Testing
func main() { if err := loadModel(); err != nil { log.Fatal(err) return } r := httprouter.New() r.POST("/recognize", recognizeHandler) err := http.ListenAndServe(":8080", r) if err != nil { log.Println(err) return }}
$ curl localhost:8080/recognize -F 'image=@../data/IMG_3560.png'{ "filename":"IMG_3000.png", "labels":[ {"label":"black swan","probability":0.98746836,"Percent":"98.75%"}, {"label":"oystercatcher","probability":0.0040768473,"Percent":"0.41%"}, {"label":"American coot","probability":0.002185003,"Percent":"0.22%"}, {"label":"black stork","probability":0.0011524856,"Percent":"0.12%"}, {"label":"redshank","probability":0.0010183558,"Percent":"0.10%"}]}
通过上面的案例我们可以发现,这个服务目前可以对于黑天鹅图像的推算概率值为 98.75%,非常准确;但是对于另外两张宠物狗的图像,最高的推算概率值也仅有 30% 左右,虽然也没有被识别成猫咪或者狼,但是和理想效果要求可用性还有一段距离(此处暂时忽略物种本身的复杂性)。主要是因为现在我们使用的还只是一个非常“原始”的模型,如果需要为小众领域服务(宠物,也可以是其它事物),需要通过训练(Training Models)增强优化,或者引入更丰富的标签,更合适的模型。当然,训练过程中也会存在样本质量不佳的情况,错误样本和各种噪音也会影响准确度。
扩展阅读:
更多精彩内容扫码关注公众号: